

Four Output Differential Buffer for PCle Gen 1 and Gen 2

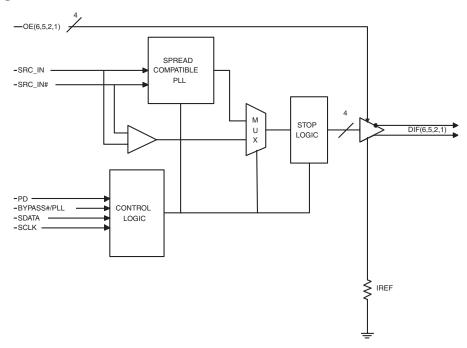
ICS9DB403D

Description

The 9DB403D is a DB400 Version 2.0 Yellow Cover part with PCI Express support. It can be used in PC or embedded systems to provide outputs that have low cycle-to-cycle jitter (50ps), low output-to-output skew (100ps), and are PCI Express Gen I compliant. The 9DB403D supports a 1 to 8 output configuration, taking a spread or non spread differential HCSL input from a CK410(B) main clock such as 954101 and 932S401, or any other differential HCSL pair. 9DB403D can generate HCSL or LVDS outputs from 50 to 100MHz in PLL mode or 0 to 400Mhz in bypass mode. There are two de-jittering modes available selectable through the HIGH_BW# input pin, high bandwidth mode provides de-jittering for spread inputs and low bandwidth mode provides extra de-jittering for non-spread inputs. The PD#, and individual OE real-time input pinsprovide completely programmable power management control.

Output Features

- 4 0.7V current-mode differential output pairs
- Supports zero delay buffer mode and fanout mode
- · Bandwidth programming available

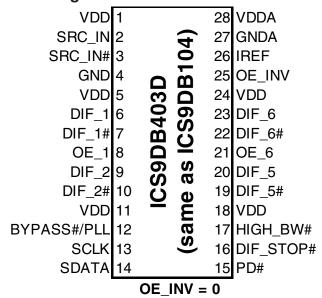

Features/Benefits

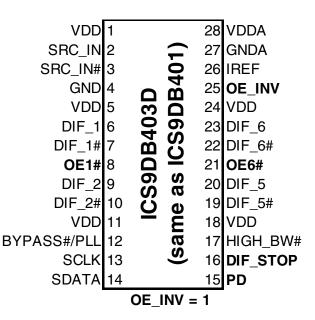
- Spread spectrum modulation tolerant, 0 to -0.5% down spread and +/- 0.25% center spread.
- Supports undriven differential outputs in PD# and SRC_STOP# modes for power management.

Key Specifications

- Outputs cycle-cycle jitter < 50ps
- Outputs skew: 50ps
- 50-100 MHz operation in PLL mode
- 50-400 MHz operation in Bypass mode
- Phase jitter: PCle Gen1 < 86ps peak to peak
- Phase jitter: PCle Gen2 < 3.1ps rms
- 28-pin SSOP/TSSOP pacakge
- Available in RoHS compliant packaging

Funtional Block Diagram


Note: Polarities shown for OE INV = 0.


IDT™/ICS™ Four Output Differential Buffer for PCle and Gen 1 and Gen 2

ICS9DB403D

REV F 04/09/08

Pin Configuration

28-pin SSOP & TSSOP

Polarity Inversion Pin List Table

	OE_INV				
Pins	0	1			
8	OE_1	OE1#			
15	PD#	PD			
16	DIF_STOP#	DIF_STOP			
21	OE_6	OE6#			

Power Groups

Pin N	lumber	Description			
VDD	GND	Description			
1	4	SRC_IN/SRC_IN#			
5,11,18, 24	4	DIF(1,2,5,6)			
N/A	27	IREF			
28	27	Analog VDD & GND for PLL core			

Pin Description for OE_INV = 0

PIN#	PIN NAME	PIN TYPE	DESCRIPTION
1	VDD	PWR	Power supply, nominal 3.3V
2	SRC_IN	IN	0.7 V Differential SRC TRUE input
3	SRC_IN#	IN	0.7 V Differential SRC COMPLEMENTARY input
4	GND	PWR	Ground pin.
5	VDD	PWR	Power supply, nominal 3.3V
6	DIF_1	OUT	0.7V differential true clock output
7	DIF_1#	OUT	0.7V differential complement clock output
0	5	IN	Active high input for enabling output 1.
8	OE_1	IIN	0 = tri-state outputs, 1= enable outputs
9	DIF_2	OUT	0.7V differential true clock output
10	DIF_2#	OUT	0.7V differential complement clock output
11	VDD	PWR	Power supply, nominal 3.3V
12	BYPASS#/PLL	IN	Input to select Bypass(fan-out) or PLL (ZDB) mode
12	DTPASS#/PLL	IIN	0 = Bypass mode, 1= PLL mode
13	SCLK	IN	Clock pin of SMBus circuitry, 5V tolerant.
14	SDATA	I/O	Data pin for SMBus circuitry, 5V tolerant.
15	PD#	IN	Asynchronous active low input pin used to power down the device. The
15	FD#	IIN	internal clocks are disabled and the VCO and the crystal are stopped.
16	DIF_STOP#	IN	Active low input to stop differential output clocks.
17	HIGH_BW#	IN	3.3V input for selecting PLL Band Width
17	THGH_BVV#	IIN	0 = High, 1= Low
18	VDD	PWR	Power supply, nominal 3.3V
19	DIF_5#	OUT	0.7V differential complement clock output
20	DIF_5	OUT	0.7V differential true clock output
21	OE_6	IN	Active high input for enabling output 6.
21	OE_0	IIN	0 = tri-state outputs, 1= enable outputs
22	DIF_6#	OUT	0.7V differential complement clock output
23	DIF_6	OUT	0.7V differential true clock output
24	VDD	PWR	Power supply, nominal 3.3V
25	OE_INV	IN	This latched input selects the polarity of the OE pins.
20	OE_IIV	IIN	0 = OE pins active high, 1 = OE pins active low (OE#)
			This pin establishes the reference current for the differential current-mode
26	IREF	OUT	output pairs. This pin requires a fixed precision resistor tied to ground in order
			to establish the appropriate current. 475 ohms is the standard value.
27	GNDA	PWR	Ground pin for the PLL core.
28	VDDA	PWR	3.3V power for the PLL core.

Pin Description for OE_INV = 1

PIN#	PIN NAME	PIN TYPE	DESCRIPTION
1	VDD	PWR	Power supply, nominal 3.3V
2	SRC_IN	IN	0.7 V Differential SRC TRUE input
3	SRC_IN#	IN	0.7 V Differential SRC COMPLEMENTARY input
4	GND	PWR	Ground pin.
5	VDD	PWR	Power supply, nominal 3.3V
6	DIF_1	OUT	0.7V differential true clock output
7	DIF_1#	OUT	0.7V differential complement clock output
0	OF1#	INI	Active low input for enabling DIF pair 1.
8	OE1#	IN	1 = tri-state outputs, 0 = enable outputs
9	DIF_2	OUT	0.7V differential true clock output
10	DIF_2#	OUT	0.7V differential complement clock output
11	VDD	PWR	Power supply, nominal 3.3V
12	BYPASS#/PLL	IN	Input to select Bypass(fan-out) or PLL (ZDB) mode
12	DTPASS#/PLL	IIN	0 = Bypass mode, 1= PLL mode
13	SCLK	IN	Clock pin of SMBus circuitry, 5V tolerant.
14	SDATA	I/O	Data pin for SMBus circuitry, 5V tolerant.
4.5	DD	INI	Asynchronous active high input pin used to power down the device.
15	PD	IN	The internal clocks are disabled and the VCO is stopped.
16	DIF_STOP	IN	Active High input to stop differential output clocks.
17	11CH BW#	INI	3.3V input for selecting PLL Band Width
17	HIGH_BW#	IN	0 = High, 1= Low
18	VDD	PWR	Power supply, nominal 3.3V
19	DIF_5#	OUT	0.7V differential complement clock output
20	DIF_5	OUT	0.7V differential true clock output
21	056#	IN	Active low input for enabling DIF pair 6.
21	OE6#	IIN	1 = tri-state outputs, 0 = enable outputs
22	DIF_6#	OUT	0.7V differential complement clock output
23	DIF_6	OUT	0.7V differential true clock output
24	VDD	PWR	Power supply, nominal 3.3V
25	OE_INV	IN	This latched input selects the polarity of the OE pins.
25	OE_IIV	IIN	0 = OE pins active high, 1 = OE pins active low (OE#)
			This pin establishes the reference current for the differential current-
26	IREF	OUT	mode output pairs. This pin requires a fixed precision resistor tied to
20	II IEF	001	ground in order to establish the appropriate current. 475 ohms is the
			standard value.
27	GNDA	PWR	Ground pin for the PLL core.
28	VDDA	PWR	3.3V power for the PLL core.

Absolute Max

Symbol	Parameter	Min	Max	Units
VDD_A	3.3V Core Supply Voltage		4.6	V
VDD_In	3.3V Logic Supply Voltage		4.6	V
V_{IL}	Input Low Voltage	GND-0.5		V
V_{IH}	Input High Voltage		V _{DD} +0.5V	V
Ts	Storage Temperature	-65	150	°C
Tambient	Ambient Operating Temp	0	70	°C
Tcase	Case Temperature		115	°C
	Input ESD protection			
ESD prot	human body model	2000		V

Electrical Characteristics - Input/Supply/Common Output Parameters

 $T_A = 0 - 70^{\circ}C$; Supply Voltage $V_{DD} = 3.3 \text{ V } +/-5\%$

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS	NOTES
Input High Voltage	V _{IH}	3.3 V +/-5%	2		$V_{DD} + 0.3$	V	
Input Low Voltage	V _{IL}	3.3 V +/-5%	GND - 0.3		0.8	V	
Input High Current	I _{IH}	$V_{IN} = V_{DD}$	-5		5	uA	
Input Low Current	I _{IL1}	$V_{IN} = 0 \text{ V}$; Inputs with no pull-up resistors	-5			uA	
	I _{IL2}	V _{IN} = 0 V; Inputs with pull-up resistors	-200			uA	
Operating Supply Current	I _{DD3.3OP}	Full Active, C _L = Full load;			125	mA	
Powerdown Current	l	all diff pairs driven			30	mA	
1 OWEIGOWII CUITEIIL	I _{DD3.3PD}	all differential pairs tri-stated			3	mA	
Input Frequency	F _{iPLL}	PLL Mode	50		110	MHz	1
input i requency	F _{iBYPASS}	Bypass Mode	50		400	MHz	1
Pin Inductance	L_{pin}				7	nΗ	1
Consoitones	C _{IN}	Logic Inputs	1.5		5	pF	1
Capacitance	C _{OUT}	Output pin capacitance			6	pF	1
PLL Bandwidth	BW	PLL Bandwidth when PLL_BW=0	2	3	4	MHz	1
FLL Dandwidth	DVV	PLL Bandwidth when PLL_BW=1	0.7	1	1.4	MHz	1
		From V _{DD} Power-Up and after input clock					
Clk Stabilization	T_{STAB}	stabilization or de-assertion of PD# to 1st			1	ms	1,2
		clock					
Modulation Frequency	f _{MOD}	Triangular Modulation	30		33	kHz	1
Tdrive_SRC_STOP#	t _{DRVSTP}	DIF output enable after SRC_Stop# de-assertion			10	ns	1,3
Tdrive_PD#	t _{DRVPD}	DIF output enable after PD# de-assertion			300	us	1,3
Tfall	t _F	Fall time of PD# and SRC_STOP#			5	ns	1
Trise	t _R	Rise time of PD# and SRC_STOP#			5	ns	2

¹Guaranteed by design and characterization, not 100% tested in production.

²See timing diagrams for timing requirements.

³Time from deassertion until outputs are >200 mV

Electrical Characteristics - Clock Input Parameters

 $T_A = 0 - 70$ °C; Supply Voltage $V_{DD} = 3.3 \text{ V +/-5}\%$

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS	NOTES
Input High Voltage - DIF_IN	V _{IHDIF}	Differential inputs (single-ended measurement)	600	800	1150	mV	1
Input Low Voltage - DIF_IN	V_{ILDIF}	Differential inputs (single-ended measurement)	V _{SS} - 300	0	300	mV	1
Input Common Mode Voltage - DIF_IN	V_{COM}	Common Mode Input Voltage	300		1000	mV	1
Input Amplitude - DIF_IN	V_{SWING}	Peak to Peak value	300		1450	mV	1
Input Slew Rate - DIF_IN	dv/dt	Measured differentially	0.4		8	V/ns	1,2
Input Leakage Current	I _{IN}	$V_{IN} = V_{DD}$, $V_{IN} = GND$	-5		5	uA	1
Input Duty Cycle	d _{tin}	Measurement from differential wavefrom	45		55	%	1
Input Jitter - Cycle to Cycle	J_{DIFIn}	Differential Measurement	0		125	ps	1

¹ Guaranteed by design and characterization, not 100% tested in production.

Electrical Characteristics - DIF 0.7V Current Mode Differential Pair

 $T_A = 0 - 70$ °C; $V_{DD} = 3.3 \text{ V}$ +/-5%; $C_L = 2 \text{pF}$, $R_S = 33.2 \Omega$, $R_P = 49.9 \Omega$, $R_{BEF} = 475 \Omega$

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS	NOTES
Current Source Output Impedance	Zo ¹	$V_O = V_x$	3000			Ω	1
Voltage High	VHigh	Statistical measurement on single ended signal	660		850	mV	1,3
Voltage Low	VLow	using oscilloscope math function.	-150		150	IIIV	1,3
Max Voltage	Vovs	Measurement on single ended signal using			1150	mV	1
Min Voltage	Vuds	absolute value.	-300			111.0	1
Crossing Voltage (abs)	Vcross(abs)		250		550	mV	1
Crossing Voltage (var)	d-Vcross	Variation of crossing over all edges			140	mV	1
Long Accuracy	ppm	see Tperiod min-max values			0	ppm	1,2
Rise Time	t _r	$V_{OL} = 0.175V, V_{OH} = 0.525V$	175		700	ps	1
Fall Time	t _f	$V_{OH} = 0.525V V_{OL} = 0.175V$	175		700	ps	1
Rise Time Variation	d-t _r				125	ps	1
Fall Time Variation	d-t _f				125	ps	1
Duty Cycle	d _{t3}	Measurement from differential wavefrom	45	50	55	%	1
Skew	t _{sk3}	V _T = 50%			50	ps	1
Jitter, Cycle to cycle	t _{icvc-cvc}	PLL mode		40	50	ps	1,5
onter, Cycle to Cycle	Sjcyc-cyc	BYPASS mode as additive jitter		15	50	ps	1,5
	t	PCIe Gen 1 specs (pk to pk value)		30	86	ps	1,6,7
litter Phase	^t jphasebypass	PCIe Gen 2 specs (rms value)		2.6	3.1	ps	1,6,7
Jitter, Phase		PCIe Gen 1 specs (pk to pk value)		40	86	ps	1,6,7
	^T jphasePLL	PCIe Gen 2 specs (rms value)		2.8	3.1	ps	1,6,7

¹Guaranteed by design and characterization, not 100% tested in production.

IDT™/ICS™ Four Output Differential Buffer for PCle Gen 1 and Gen 2

²Slew rate measured through Vswing min centered around differential zero

² All Long Term Accuracy specifications are guaranteed with the assumption that the input clock complies with CK409/CK410/CK505 accuracy requirements. The 9DB403/803 itself does not contribute to ppm error.

 $^{^{3}}I_{REF} = V_{DD}/(3xR_{R})$. For $R_{R} = 475\Omega$ (1%), $I_{REF} = 2.32$ mA. $I_{OH} = 6$ x I_{REF} and $V_{OH} = 0.7$ V @ $Z_{O} = 50\Omega$.

⁴ Applies to Bypass Mode Only

⁵ Measured from differential waveform

⁶ See http://www.pcisig.com for complete specs

⁷ Device driven by HP81134A Pulse Generator

Clock Periods Differential Outputs with Spread Spectrum Enabled

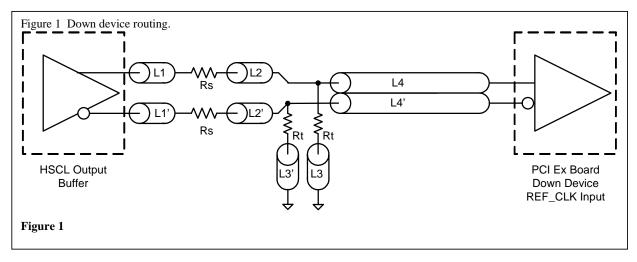
	urement ndow	1 Clock	1us	0.1s	0.1s	0.1s	1us	1 Clock		
Sy	mbol	Lg-	-SSC	-ppm error	0ppm	+ ppm error	+SSC	Lg+		
		Absolute Period	Short-term Average	Long-Term Average	Period	Long-Term Average	Short-term Average	Period		
Definition		Minimum Absolute Period	Minimum Absolute Period	Minimum Absolute Period	Nominal	Maximum	Maximum	Maximum	Units	Notes
	DIF 100	9.87400	9.99900	9.99900	10.00000	10.00100	10.05130	10.17630	ns	1,2,3
<u>e</u>	DIF 133	7.41425	7.49925	7.49925	7.50000	7.50075	7.53845	7.62345	ns	1,2,4
Name	DIF 166	5.91440	5.99940	5.99940	6.00000	6.00060	6.03076	6.11576	ns	1,2,4
a N	DIF 200	4.91450	4.99950	4.99950	5.00000	5.00050	5.02563	5.11063	ns	1,2,4
Signal	DIF 266	3.66463	3.74963	3.74963	3.75000	3.75038	3.76922	3.85422	ns	1,2,4
S	DIF 333	2.91470	2.99970	2.99970	3.00000	3.00030	3.01538	3.10038	ns	1,2,4
	DIF 400	2.41475	2.49975	2.49975	2.50000	2.50025	2.51282	2.59782	ns	1,2,4

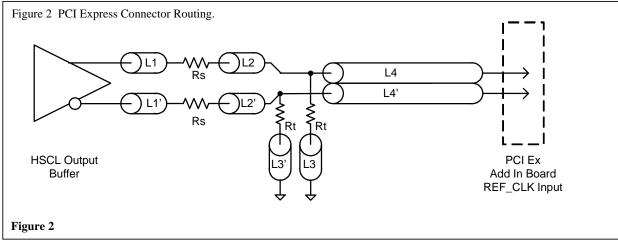
Clock Periods Differential Outputs with Spread Spectrum Disabled

	urement ndow	1 Clock	1us	0.1s	0.1s	0.1s	1us	1 Clock		
Sy	mbol	Lg-	-SSC	-ppm error	0ppm	+ ppm error	+SSC	Lg+		
		Absolute Period	Short-term Average	Long-Term Average	Period	Long-Term Average	Short-term Average	Period		
Def	inition	Minimum Absolute	Minimum Absolute	Minimum Absolute	Nominal	Maximum	Maximum	Maximum		
		Period	Period	Period					Units	Notes
	DIF 100	9.87400		9.99900	10.00000	10.00100		10.17630	ns	1,2,3
<u>e</u>	DIF 133	7.41425		7.49925	7.50000	7.50075		7.62345	ns	1,2,4
Name	DIF 166	5.91440		5.99940	6.00000	6.00060		6.11576	ns	1,2,4
<u>a</u>	DIF 200	4.91450		4.99950	5.00000	5.00050		5.11063	ns	1,2,4
Signal	DIF 266	3.66463		3.74963	3.75000	3.75038		3.85422	ns	1,2,4
S	DIF 333	2.91470		2.99970	3.00000	3.00030		3.10038	ns	1,2,4
	DIF 400	2.41475		2.49975	2.50000	2.50025		2.59782	ns	1,2,4

¹Guaranteed by design and characterization, not 100% tested in production.

² All Long Term Accuracy specifications are guaranteed with the assumption that the input clock complies with CK409/CK410/CK505 accuracy requirements. The 9DB403/803 itself does not contribute to ppm error.

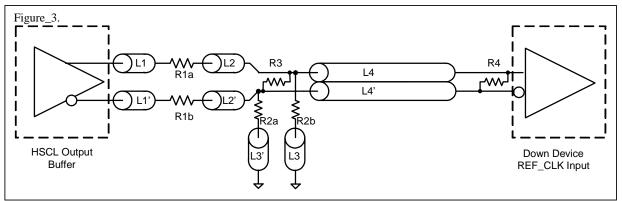

³ Driven by SRC output of main clock, PLL or Bypass mode


⁴ Driven by CPU output of CK410/CK505 main clock, **Bypass mode only**

SRC Reference Clock								
Common Recommendations for Differential Routing	Dimension or Value	Unit	Figure					
L1 length, Route as non-coupled 50 ohm trace.	0.5 max	inch	1					
L2 length, Route as non-coupled 50 ohm trace.	0.2 max	inch	1					
L3 length, Route as non-coupled 50 ohm trace.	0.2 max	inch	1					
Rs	33	ohm	1					
Rt	49.9	ohm	1					

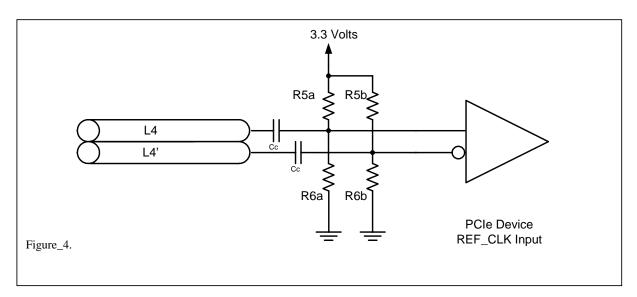
Down Device Differential Routing	Dimension or Value	Unit	Figure
L4 length, Route as coupled microstrip 100 ohm differential trace.	2 min to 16 max	inch	1
L4 length, Route as coupled stripline 100 ohm differential trace.	1.8 min to 14.4 max	inch	1

Differential Routing to PCI Express Connector	Dimension or Value	Unit	Figure
L4 length, Route as coupled microstrip 100 ohm differential trace.	0.25 to 14 max	inch	2
L4 length, Route as coupled stripline 100 ohm differential trace.	0.225 min to 12.6 max	inch	2



Alternative termination for LVDS and other common differential signals. Figure 3.

Vdiff	Vp-p	Vcm	R1	R2	R3	R4	Note
0.45 v	0.22v	1.08	33	150	100	100	
0.58	0.28	0.6	33	78.7	137	100	
0.80	0.40	0.6	33	78.7	none	100	ICS874003i-02 input compatible
0.60	0.3	1.2	33	174	140	100	Standard LVDS


R1a = R1b = R1

R2a = R2b = R2

Cable connected AC coupled application, figure 4

Component	Value	Note
R5a,R5b	8.2K 5%	
R6a,R6b	1K 5%	
Сс	0.1 uF	
Vcm	0.350 volts	

General SMBus serial interface information for the ICS9DB403D

How to Write:

- · Controller (host) sends a start bit.
- Controller (host) sends the write address DC (n)
- ICS clock will acknowledge
- Controller (host) sends the begining byte location = N
- ICS clock will acknowledge
- Controller (host) sends the data byte count = X
- ICS clock will acknowledge
- Controller (host) starts sending Byte N through Byte N + X -1
- ICS clock will acknowledge each byte one at a time
- Controller (host) sends a Stop bit

How to Read:

- · Controller (host) will send start bit.
- Controller (host) sends the write address DC (h)
- ICS clock will acknowledge
- Controller (host) sends the begining byte location = N
- ICS clock will acknowledge
- Controller (host) will send a separate start bit.
- Controller (host) sends the read address DD (h)
- ICS clock will acknowledge
- ICS clock will send the data byte count = X
- ICS clock sends Byte N + X -1
- ICS clock sends Byte 0 through byte X (if X_(h) was written to byte 8).
- Controller (host) will need to acknowledge each byte
- · Controllor (host) will send a not acknowledge bit
- · Controller (host) will send a stop bit

Ind	ex Block V	/rit	e Operation
Cor	ntroller (Host)		ICS (Slave/Receiver)
Т	starT bit		
Slav	e Address DC _(h)		
WR	WRite		
		ACK	
Begi	nning Byte = N		
		ACK	
Data	Byte Count = X		
			ACK
Begir	ning Byte N		
			ACK
	\rightarrow	ţe	
	\rightarrow	X Byte	\rightarrow
	\Q	×	\rightarrow
_		\rightarrow	
Byte	e N + X - 1		
			ACK
Р	stoP bit		

Ind	Index Block Read Operation									
Con	troller (Host)	IC	S (Slave/Receiver)							
Т	starT bit									
Slave	e Address DC _(h)									
WR	WRite									
		ACK								
Begii	nning Byte = N									
			ACK							
RT	Repeat starT									
Slave	Address DD _(h)									
RD	ReaD									
	-	ACK								
		Data Byte Count = X								
	ACK									
			Beginning Byte N							
	ACK									
		X Byte	\Diamond							
	O	B	O							
	\Q	×	\Q							
\Q										
			Byte N + X - 1							
N	Not acknowledge									
Р	stoP bit									

SMBus Table: Frequence	v Select Register.	READ/WRITE	ADDRESS	(DC/DD)

Byt	te 0 Pin	# Name	Control Function	Type	0	1	PWD
Bit 7	-	PD_Mode	PD# drive mode	RW	driven	Hi-Z	0
Bit 6	-	STOP_Mode	SRC_Stop# drive mode	RW	driven	Hi-Z	0
Bit 5	-	PD_Polarity	Select PD polarity	RW	Low	High	0
Bit 4	-	Reserved	Reserved	RW	Reserved		Χ
Bit 3	-	Reserved	Reserved	RW	Rese	erved	Χ
Bit 2	-	PLL_BW#	Select PLL BW	RW	High BW	Low BW	1
Bit 1	-	BYPASS#	BYPASS#/PLL	RW	fan-out	ZDB	1
Bit 0	-	SRC_DIV#	SRC Divide by 2 Select	RW	x/2	1x	1

SMBus Table: Output Control Register

Ombao Tablet Gathar Tegleter								
Byt	te 1 Pin	# Name)	Control Function	Туре	0	1	PWD
Bit 7	42,41	DIF_7	•	Output Control	RW	Disable	Enable	1
Bit 6	38,37	DIF_6		Output Control	RW	Disable	Enable	1
Bit 5	34,33	DIF_5		Output Control	RW	Disable	Enable	1
Bit 4	30,29	DIF_4		Output Control	RW	Disable	Enable	1
Bit 3	20,21	DIF_3		Output Control	RW	Disable	Enable	1
Bit 2	16,17	DIF_2		Output Control	RW	Disable	Enable	1
Bit 1	12,13	DIF_1		Output Control	RW	Disable	Enable	1
Bit 0	8,9	DIF_0		Output Control	RW	Disable	Enable	1

SMBus Table: Output Control Register

Olliba	o rabioi o at	at control ricgis					
Ву	te 2 Pin #	Name	Control Function	Type	0	1	PWD
Bit 7	42,41	DIF_7	Output Control	RW	Free-run	Stoppable	0
Bit 6	38,37	DIF_6	Output Control	RW	Free-run	Stoppable	0
Bit 5	34,33	DIF_5	Output Control	RW	Free-run	Stoppable	0
Bit 4	30,29	DIF_4	Output Control	RW	Free-run	Stoppable	0
Bit 3	20,21	DIF_3	Output Control	RW	Free-run	Stoppable	0
Bit 2	16,17	DIF_2	Output Control	RW	Free-run	Stoppable	0
Bit 1	12,13	DIF_1	Output Control	RW	Free-run	Stoppable	0
Bit 0	8,9	DIF_0	Output Control	RW	Free-run	Stoppable	0

SMBus Table: Output Control Register

Ву	te 3	Pin #	Name	Control Function	Туре	0	0 1	
Bit 7				Reserved	RW	Rese	erved	X
Bit 6				Reserved	RW	Rese	erved	X
Bit 5				Reserved	RW	Rese	Reserved	
Bit 4				Reserved RW Reserved		erved	Χ	
Bit 3				Reserved	RW	Rese	erved	Χ
Bit 2				Reserved	RW	Rese	erved	Χ
Bit 1				Reserved	RW	Rese	Reserved	
Bit 0				Reserved	RW	Rese	erved	X

SMBus Table: Vendor & Revision ID Register

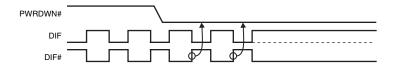
Byte 4	Pin #	Name	Control Function	Туре	0	1	PWD
Bit 7	-	RID3		R	-	-	Х
Bit 6	-	RID2	DEVICIONID	R	-	-	Х
Bit 5	-	RID1	REVISION ID	R	-	-	Х
Bit 4	-	RID0		R	-	-	Х
Bit 3	-	VID3		R	-	-	0
Bit 2	-	VID2	VENDODID	R	-	-	0
Bit 1	-	VID1	VENDOR ID	R	-	-	0
Bit 0	-	VID0		R	_	-	1

SMBus Table: DEVICE ID

Byte 5	Pin #	Name	Control Function	Туре	0	1	PWD
Bit 7	-	Device ID 7 (MSB) RW					0
Bit 6	-		Device ID 6	RW			Х
Bit 5	-	Device ID 5 RW Device ID is 83 Hex		io 92 Hov	Х		
Bit 4	-		Device ID 4	RW	W for 9DB803 and 43		0
Bit 3	-		Device ID 3	RW		0	
Bit 2	-	Devi	Device ID 2 RW	RW	RW Nex 101 3DD		0
Bit 1	-		Device ID 1	RW			1
Bit 0	-		Device ID 0	RW			1

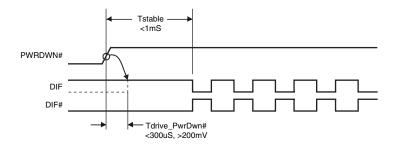
SMBus Table: Byte Count Register

Ву	te 6 P	in #	Name	Control Function	Туре	0	1	PWD
Bit 7	-		BC7		RW	-	-	0
Bit 6	-		BC6		RW	-	-	0
Bit 5	-		BC5	Writing to this register configures how many bytes will be read back.	RW	-	-	0
Bit 4	-		BC4		RW	-	-	0
Bit 3	-		BC3		RW	-	-	0
Bit 2	-		BC2		RW	-	-	1
Bit 1	-		BC1		RW	-	-	1
Bit 0	-		BC0		RW	-	-	1


Note: Polarities in timing diagrams are shown OE_INV = 0. They are similar to OE_INV = 1.

PD#, Power Down

The PD# pin cleanly shuts off all clocks and places the device into a power saving mode. PD# must be asserted before shutting off the input clock or power to insure an orderly shutdown. PD is asynchronous active-low input for both powering down the device and powering up the device. When PD# is asserted, all clocks will be driven high, or tri-stated (depending on the PD# drive mode and Output control bits) before the PLL is shut down.


PD# Assertion

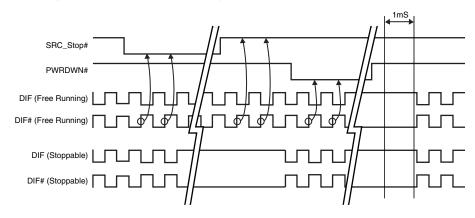
When PD# is sampled low by two consecutive rising edges of DIF#, all DIF outputs must be held High, or tri-stated (depending on the PD# drive mode and Output control bits) on the next High-Low transition of the DIF# outputs. When the PD# drive mode bit is set to '0', all clock outputs will be held with DIF driven High with 2 x I_{REF} and DIF# tri-stated. If the PD# drive mode bit is set to '1', both DIF and DIF# are tri-stated.

PD# De-assertion

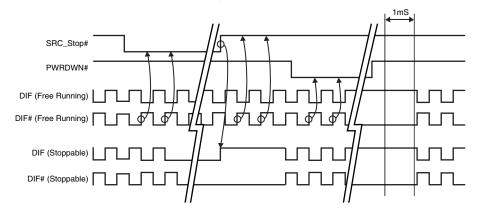
Power-up latency is less than 1 ms. This is the time from de-assertion of the PD# pin, or VDD reaching 3.3V, or the time from valid SRC_IN clocks until the time that stable clocks are output from the device (PLL Locked). If the PD# drive mode bit is set to '1', all the DIF outputs must driven to a voltage of >200 mV within 300 us of PD# de-assertion.

SRC_STOP#

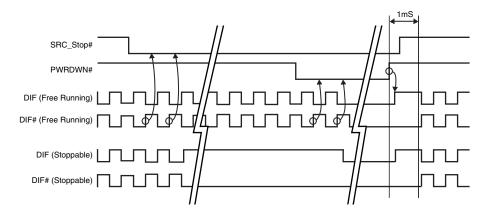
The SRC_STOP# signal is an active-low asynchronous input that cleanly stops and starts the DIF outputs. A valid clock must be present on SRC_IN for this input to work properly. The SRC_STOP# signal is de-bounced and must remain stable for two consecutive rising edges of DIF# to be recognized as a valid assertion or de-assertion.

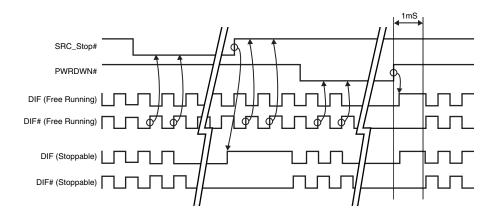

SRC STOP# - Assertion

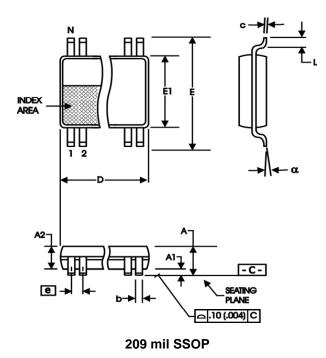
Asserting SRC_STOP# causes all DIF outputs to stop after their next transition (if the control register settings allow the output to stop). When the SRC_STOP# drive bit is '0', the final state of all stopped DIF outputs is DIF = High and DIF# = Low. There is no change in output drive current. DIF is driven with $6x_{REF}$ DIF# is not driven, but pulled low by the termination. When the SRC_STOP# drive bit is '1', the final state of all DIF output pins is Low. Both DIF and DIF# are not driven.


SRC_STOP# - De-assertion (transition from '0' to '1')

All stopped differential outputs resume normal operation in a glitch-free manner. The de-assertion latency to active outputs is 2-6 DIF clock periods, with all DIF outputs resuming simultaneously. If the SRC_STOP# drive control bit is '1' (tri-state), all stopped DIF outputs must be driven High (>200 mV) within 10 ns of de-assertion.


SRC_STOP_1 (SRC_Stop = Driven, PD = Driven)


SRC_STOP_2 (SRC_Stop =Tristate, PD = Driven)



SRC_STOP_3 (**SRC_Stop** = **Driven**, **PD** = **Tristate**)

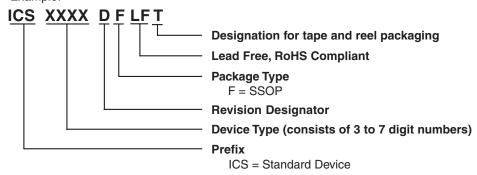
SRC_STOP_4 (SRC_Stop = Tristate, PD = Tristate)

209 mil SSOP

	In Milli	meters	In Inches		
SYMBOL	COMMON DIMENSIONS		COMMON DIMENSIONS		
01202	MIN	MAX	MIN	MAX	
Α		2.00		.079	
A1	0.05		.002		
A2	1.65	1.85	.065	.073	
b	0.22	0.38	.009	.015	
С	0.09	0.25	.0035	.010	
D	SEE VARIATIONS		SEE VARIATIONS		
Е	7.40	8.20	.291	.323	
E1	5.00	5.60	.197	.220	
е	0.65 BASIC		0.0256	6 BASIC	
L	0.55	0.95	.022	.037	
N	SEE VARIATIONS		SEE VAF	RIATIONS	
α	0°	8°	0°	8°	

VARIATIONS

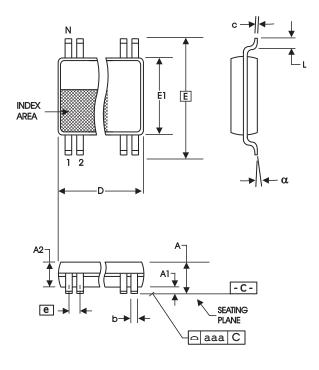
N	Dn	nm.	D (inch)		
N	MIN	MAX	MIN	MAX	
28	9.90	10.50	.390	.413	


Reference Doc.: JEDEC Publication 95, MO-150

10-0033

Ordering Information

ICS9DB403DFLFT


Example:

IDT™/ICS™ Four Output Differential Buffer for PCle Gen 1 and Gen 2

ICS9DB403D

REV F 04/09/08

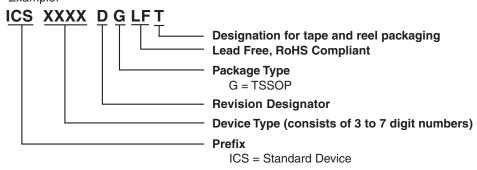
4.40 mm. Body, 0.65 mm. Pitch TSSOP

(173 mil) (25.6 mil)

	In Milli	meters	In Inches		
SYMBOL	COMMON D	IMENSIONS	COMMON DIMENSIONS		
	MIN	MAX	MIN	MAX	
Α		1.20		.047	
A1	0.05	0.15	.002	.006	
A2	0.80	1.05	.032	.041	
b	0.19	0.30	.007	.012	
С	0.09	0.20	.0035	.008	
D	SEE VARIATIONS		SEE VARIATIONS		
E	6.40 BASIC		0.252 BASIC		
E1	4.30	4.50	.169	.177	
е	0.65 BASIC		0.0256 BASIC		
L	0.45	0.75	.018	.030	
N	SEE VARIATIONS		SEE VARIATIONS		
α	0°	8°	0°	8°	
aaa		0.10		.004	

VARIATIONS

N	D mm.		D (inch)		
IN	MIN	MAX	MIN	MAX	
28	9.60	9.80	.378	.386	


Reference Doc.: JEDEC Publication 95, MO-153

10-0035

Ordering Information

ICS9DB403DGLFT

Example:

IDT™/ICS™ Four Output Differential Buffer for PCle Gen 1 and Gen 2

ICS9DB403D

REV F 04/09/08

Revision History

Rev.	Issue Date	Description	Page #
		Updated electrical characteristics for final data sheet	
Α	8/15/2006	2. Corrected references to 8 outputs (should be 4)	-
В	5/22/2007	Updated Polarity Inversion Table.	2
		1. Corrected SMBus table to eliminate non-existant outputs. This	
		effects bytes 1 and 2.	
С	1/16/2008	2. Changed PWD notation to Default in SMBus descriptions	11
D	2/29/2008	Added Input Clock Specs	6
Е	3/18/2008	Fixed typo in Input Clock Parameters	6
F	4/9/2008	Updated Input Clock Specs	6

Innovate with IDT and accelerate your future networks. Contact:

www.IDT.com

For Sales

800-345-7015 408-284-8200 Fax: 408-284-2775

For Tech Support

408-284-6578 pcclockhelp@idt.com

Corporate Headquarters

Integrated Device Technology, Inc. 6024 Silver Creek Valley Road San Jose, CA 95138 United States 800 345 7015 +408 284 8200 (outside U.S.)

Asia Pacific and Japan

Integrated Device Technology Singapore (1997) Pte. Ltd. Reg. No. 199707558G 435 Orchard Road #20-03 Wisma Atria Singapore 238877 +65 6 887 5505

Europe

IDT Europe, Limited Prime House Barnett Wood Lane Leatherhead, Surrey United Kingdom KT22 7DE +44 1372 363 339

© 2006 Integrated Device Technology, Inc. All rights reserved. Product specifications subject to change without notice. IDT and the IDT logo are trademarks of Integrated Device Technology, Inc. Accelerated Thinking is a service mark of Integrated Device Technology, Inc. All other brands, product names and marks are or may be trademarks or registered trademarks used to identify products or services of their respective owners.

Printed in USA